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Abstract—This paper investigates the problem of global chaos synchronization of identical hyperchaotic Qi 

systems (2008) by sliding mode control. The stability results derived in this paper for the synchronization of identical 

hyperchaotic Qi systems are established using Lyapunov stability theory. Since the Lyapunov exponents are not 

required for these calculations, the sliding mode control method is very effective and convenient to achieve global 

chaos synchronization of the identical hyperchaotic Qi systems. Numerical simulations are shown to illustrate the 

effectiveness of the synchronization schemes derived in this paper. 
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INTRODUCTION 

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The sensitive nature of chaotic 

systems is commonly called as the butterfly effect [1]. 

Synchronization of chaotic systems is a phenomenon which may occur when two or more chaotic oscillators are 

coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly effect which causes the 

exponential divergence of the trajectories of two identical chaotic systems started with nearly the same initial 

conditions, synchronizing two chaotic systems is seemingly a very challenging problem. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is used. If a particular 

chaotic system is called the master or drive system and another chaotic system is called the slave or response system, 

then the idea of the synchronization is to use the output of the master system to control the slave system so that the 

output of the slave system tracks the output of the master system asymptotically. 

Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization problem has been studied 

extensively and intensively in the literature [2-17]. Chaos theory has been applied to a variety of fields such as 

physical systems [3], chemical systems [4], ecological systems [5], secure communications [6-8], etc. 

In the last two decades, various schemes have been successfully applied for chaos synchronization such as PC method 

[2], OGY method [9], active control method [10-12], adaptive control method [13-14], time-delay feedback method 

[15], backstepping design method [16], sampled-data feedback method [17], etc. 

In this paper, we derive new results based on the sliding control [18-20] for the global chaos synchronization of 

identical hyperchaotic Qi systems ([21], 2008). 

In robust control systems, the sliding control method is often adopted due to its inherent advantages of easy 

realization, fast response and good transient performance as well as its insensitivity to parameter uncertainties and 

external disturbances. 

This paper has been organized as follows. In Section II, we describe the problem statement and our methodology 

using sliding mode control. In Section III, we discuss the global chaos synchronization of identical hyperchaotic Qi 

systems. In Section IV, we summarize the main results obtained in this paper. 

 
PROBLEM STATEMENT AND OUR METHODOLOGY USING SLIDING MODE CONTROL 

In this section, we describe the problem statement for the global chaos synchronization for identical chaotic systems 

and our methodology using sliding control. 

Consider the chaotic system described by 

x  Ax  f (x) 

where x  Rn
 is the state of the system, A is the n  n matrix of the system parameters and the 

nonlinear part of the system. We consider the system (1) as the master or drive system. 

(1) 

f : Rn
  Rn

 is 

As the slave or response system, we consider the following chaotic system described by the dynamics 

 

 
where 

y  Ay  f ( y)  u 

y  Rn
 is the state of the system and u  Rm

 is the controller to be designed. 

(2) 

If we define the synchronization error as 

e  y  x, 

then the error 

dynamics is 

obtained as 
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e  Ae (x, y)  u,  

 
(3) 

 

 
(4) 

where  
(x, y) 


f ( y)  f (x) 

 

 
(5) 

The objective of the global chaos synchronization problem is to find a controller u such that 

lim 
t 

e(t)  0 for all e(0)  R n. 

To solve this problem, we first define the control u as 

u  (x, y)  Bv 

where B is a constant gain vector selected such that ( A, B) 

Substituting (5) into (4), the error dynamics simplifies to 

e  Ae  Bv 

 

 

 
 

is controllable. 

 

 
(6) 

 

 

 
 

(7) 

which is a linear time-invariant control system with single input Thus, the original global chaos 

synchronization problem can be replaced by an equivalent problem of stabilizing the zero solution e  0 of the 

system (7) by a suitable choice of the sliding control. 

In the sliding control, we define the variable 

s(e)  Ce  c1e1  c2e2   cnen (8) 

In the sliding control, we constrain the motion of the system (7) to the sliding manifold defined by 

S  x  R n | s(e)  0
which is required to be invariant under the flow of the error dynamics (7). 

When in sliding manifold S, the system (7) satisfies the following conditions: 

s(e)  0  

(9) 
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eq 



which is the defining equation for the manifold S and 

s(e)  0 

 
 

(10) 

which is the necessary condition for the state trajectory e(t) of (7) to stay on the sliding manifold S. 

Using (7) and (8), the equation (10) can be rewritten as 

s(e)  C  Ae  Bv  0 

Solving (11) for v, we obtain the equivalent control law 

v (t )  (CB)
1

CA e(t)  

where C is chosen such that CB  0. 

Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as 

e  I  B(CB)
1

C  Ae 

(11) 

 

 
(12) 

 

 

 

 
(13) 

The row vector  C is selected such that the system matrix of the controlled dynamics  
I  B(CB)

1
C  A is Hurwitz. 

Then the system (13) is globally asymptotically stable. 

To design the sliding controller for (7), we apply the constant plus proportional rate reaching law 

s  q sgn(s)  k s 

where sgn() denotes the sign function and the gains 

condition is satisfied and sliding motion will occur. 

 
q  0, 

(14) 

k  0 are determined such that the sliding 

From equations (11) and (14), we can obtain the control v(t) as 

v(t)  (CB)
1

 C(kI  A)e  q sgn(s)
which yields 

 

 
(15) 

(CB)
1 C(kI  A)e  q, if s(e)  0 

v(t)  
(CB)

1 C(kI  A)e  q, if s(e)  0 

 
(16) 

Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically synchronized for all 

initial conditions x(0), y(0)  R
n
 by the feedback control law 

u(t)  (x, y)  Bv(t) (17) 

where v(t) is defined by (15) and B is a column vector such that ( A, B) is controllable. Also, the sliding mode gains k, 

q are positive. 

Proof. First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the closed-loop error 

dynamics as 

e  Ae  B(CB)
1

 C(kI  A)e  q sgn(s) (18) 

To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate Lyapunov function 

defined by the equation 

V (e)  
1 

s
2
 (e) 2 

which is a  
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V (e)  s(e)s(e)  ks
2
  q sgn(s)s 

which is a negative definite function on R
n
. 

(20) 

This calculation shows that V is a globally defined, positive definite, Lyapunov function for the error 

dynamics (18), which has a globally defined, negative definite time derivative V. 

Thus, by Lyapunov stability theory [22], it is immediate that the error dynamics (18) is globally asymptotically 

stable for all initial conditions e(0)  R n. 

This means that for all initial conditions e(0)  R
n
 , we have 

lim e(t)  0 
t 

Hence, it follows that the master system (1) and the slave system (2) are globally and asymptotically 

synchronized for all initial conditions x(0), y(0)  R n. 
This completes the proof. 



GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC QI SYSTEMS 

 

Theoretical Results 

In this section, we apply the sliding mode control results derived in Section 2 for the global chaos synchronization of 

identical hyperchaotic Qi systems ([21], 2008). 

The hyperchaotic Qi system is one of the paradigms of the four-dimensional hyperchaotic systems discovered by G. 

Qi, M.A. Wyk, B.J. Wyk and G. Chen (2008). 

Thus, the master system is described by the hyperchaotic Qi dynamics 

x1  a(x2   x1 )  x2 x3 x2  b(x1   x2 )  x1x3 

x3   cx3    x4   x1 x2 x4   dx4   fx3   x1 x2 
(21) 

where x1, x2 , x3, x4 are state variables of the system and a, b, c, d , , f are positive, constant parameters of the 

system. 

The slave system is described by the controlled hyperchaotic Qi dynamics 

y1  a( y2   y1 )  y2 y3   u1 y2  b( y1   y2 )  y1 y3   u2 

 

 

 
 

where 

y3   cy3    y4   y1 y2   u3 y4   dx4    fy3   y1 y2   u4 

y1 , y2 , y3 , y4 are state variables and u1 , u2 , u3 , u4 are the controllers to be designed. 

(22) 

The Qi system (21) is hyperchaotic when the parameter values are taken as 

a  50, b  24, c  13, d  8,   33 and f  30. 

The hyperchaotic portrait of the Qi system (21) is illustrated in Fig. 1. The synchronization error is defined by 

http://www.pragatipublication.com/


 

                                      

                               International journal of basic and applied research 

www.pragatipublication.com 
ISSN 2249-3352 (P) 2278-0505 (E) 

Cosmos Impact Factor-5.86  

5  

Index in Cosmos 
April 2022 Volume 12 ISSUE 2 

UGC Approved Journal   

e1  y1  x1 e2  y2  x2 e3  y3 

 x3 e4  y4  x4 

 

 

(23) 

 
 

 
 

Figure 1. State Portrait of the Hyperchaotic Qi System 

The error dynamics is easily obtained as 

e1  a(e2   e1 )  y2 y3   x2 x3   u1 e2 

 b(e1   e2 )  y1 y3   x1 x3   u2 e3   

ce3   e4   y1 y2   x1x2   u3 e4   

de4   fe3   y1 y2   x1 x2   u4 

We write the error dynamics (24) in the matrix notation as 

e  Ae (x, y)  u 

 

 

 

 

 
(24) 

 

 

 

 
(25) 

where  
a a 

 

0 0 


 y2 y3  x2 x3 


u1 

 
b b 0 0 





 y y  x x 


 u 

A    , (x, y)   1   3 1 3  and u   2  .
 (26) 

 0 0 c    y1 y2  x1 x2 
 u3 

 
0 0 f d 




 
y y  x x 


 

u 

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The sliding mode controller design is carried out as detailed in 

Section 2. 

First, we set u as 

u  (x, y)  Bv 

where B is chosen such that ( A, B) is controllable. 

We take B as 

1   
1   

B   . 
1   
     
1   

In the hyperchaotic case, the parameter values are 

 

 

 
(27) 

 

 

 

 

 

 
(28) 

a  50, b  24, c  13, d  8,   33 

The sliding mode variable is selected as 

s  Ce  8 1 1 1e  8e1  e2   e3  e4 

and f  30. 
 

 

 
 

(29) 

which makes the sliding mode state equation asymptotically stable. 

We choose the sliding mode gains as k  4 and q  0.1. 

We note that a large value of k can cause chattering and an appropriate value of q is chosen to speed up the 

time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain v(t) as 

v(t)  31.2727e1  38.9091e2 1.9091e3  3.3636e4  0.0091sgn(s) 

Thus, the required sliding mode controller is obtained as 

u  (x, y)  Bv 

where  (x, y), B and v(t) are defined as in the equations (26), (28) and (30). 

By Theorem 1, we obtain the following result. 

 

(30) 

 

 
(31) 

Theorem 2. The identical hyperchaotic Qi systems (21) and (22) are globally and asymptotically synchronized 

for all initial conditions with the sliding controller u defined by (31). 



A. Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step h  10
6

 is used to 

solve the hyperchaotic Qi chaotic systems (21) and (22) with the sliding controller u given by (31) using 

MATLAB. 

In the hyperchaotic case, the parameter values are 
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Fig. 2 illustrates the complete synchronization of the identical hyperchaotic Qi systems (21) and 

(22). 

Figure 2. Synchronization of Identical Hyperchaotic Qi Systems 

 

 

CONCLUSIONS 

In this paper, we have deployed sliding control to achieve global chaos synchronization for the identical 

hyperchaotic Qi systems (2008). Our synchronization results for the identical hyperchaotic Qi systems have 

been proved using Lyapunov stability theory. Since the Lyapunov exponents are not required for these 

calculations, the sliding control method is very effective and convenient to achieve global chaos synchronization 

for the identical hyperchaotic Qi systems. Numerical simulations are also shown to illustrate the effectiveness of 

the synchronization results derived in this paper using the sliding mode control. 
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